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Spinor analysis for the quantum group SUJ2) 

XingChang Song 
CCAST (World Laboratory), PO Box 8730, kijing 1w080. People's Republic of China, 
and (mailing addreas) Department of Physics, Peking University, Beijing 1wS71, People's 
Republic of (hina 

Reaived 5 November 1991 

A b s b a n  Based on Ihe definitions of quantum group SU,(Z) and the two-dimansional 
quantum plane h la Woronowin and Main,  the covariant spinor calculus, very similar 
to the classical SU(2) goup. is presented. New features arise fiom the non-commutation 
among the entries of the quantum matrix and among Ihe 'coordinates' of the quantum 
plane. q-deformed Pauli matrims are defined and their applications are illustrated. 

1. Introduction 

Recently, much attention has been paid to the quantum groups. The mathematical 
structure of the quantum-enveloping algebras has been systematically carried out by 
Drinfeld [l], Jimbo [2] and by Reshetikhin and co-workers (31. Another approach 
to the same subject, mainly in dealing with the quantum formal group itself as a 
non-commuting space and the so-called quantum plane on which the quantum group 
acts, was developed by Woronowicz [4] and Manin [5]. In this paper, starting from 
the quantum plane we develop the covariant spinor calculus method, parallel to that 
used in the classical SU(2) group, which we believe is more familiar to physicists. 

fii the notation and conventions. The main tools for the modified spinor calculus, 
e.g. the projection operators and q-deformed Pauli matrices etc. are examined in 
section 3, and their applications are outlined in section 4. 

A simple spinor calculation has been proposed in [6] and the present work can 
be considered as a further step in developing and completing this method. Some of 
the points in this paper have already been outlined in a talk given by Wess [7] and 
reported in [8]. We include them here for completeness. 

T- ..-̂r:,.- 0 ...- --Aa.. ehn nnlr*l.l.,c in tho , 4 ~ c & n ~ 1  FTTI')\ mn..n rgOa en 
111 Jlx,""II I., m r  LG"'lGW c u r  L y y " ' " '  MI*Y.UU "1 U.l .A'...,.- "U{', w"Yy -I L" 
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with ua = (;) the complex coordinates of the ZD vector and 

the non-singular matrix satisfying the unitarily condition 

M t M = E  

where E is a unit 2 x 2 matrix, and the unimodularity condition 

d e t  M = ad-  b e =  1. 

This gives the following relations among the entries of M :  

b = -e* d = a' a*a + C*C = 1 

and the other form of the unitarily condition 

M M t  = E .  

The conjugate complex ZD vector, usually represented by a row vector a, = (U', U*), 
is transformed as 

(2.6) t i , - i i b , - t i ,M t o  a. 

Then the unitarily condition implies that the length of the vector U is invariant, 

(2.7) I -  I tioua = u'u + v*v = inv = u'*u' + v v 

while the unimodularity condition gives 

eopu'5u'@ = eaBuou@ = 0 (2.8) 

where the second equation comes from the commutation of the coordinates and the 
Levi-Civita symbol ea@ and its inverse eo@ are given by 

(2.9) 

with 

= 6 a 7 .  (2.10) 

As a matter of fact e a p ( e a 8 )  is the eigenvector of A4 @ M with det A4 being the 
associated eigenvalue 

Mm,,MoB,ea'@' = (det  M)e"@ eaBMao,M@B,  = e O B  , ,(det M ) .  (2.11) 
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For the unimodular matrix, det M = 1, C ~ ~ ( E , ~ )  is an invariant tensor, and then 

€76 M7 B = M-1- 6 or E - ' M ' E  = M-' (2.1242) 

with M' being the transposition of the matrix M. 
For the SU(2) matrix, direct calculation gives 

€67 Mt7 B = M a  6 or M+E-'  = M i .  (2.126) 

Thii is indeed the same relation as in (2.12u) since M +  = M - l ,  and this means that 

a- E O B €  Pa (2.13) 

transforms just as ua does. This is the feature of SU(2) groupthe basic vector U* 
and its conjugate aa = (U(')' carry the equivalent representation. As is well known, 
the combination 

I' E iio'u = ii.,o" B"@ (2.14) 

transform as a triple representation: zi + zfi = D i , d .  Here D i j  is the usual 
rotation matrix and ai are Pauli matrices which can be brought to the normalized 
canonical form for convenience in the following discussion. 

(2.15) 

The commutation relations now take the form 

[T3, T+] = *d%* [T+, r-1 = h T 3 .  (2.16) 

This implies that (-T+T,T-) construct the j = 1 irreducible t e m r  (r1,', r,,,, r1,-'). 
Later on we denote them as T", m = (+l),(O),(-1) or equivalently m = + , 3 , -  
wherever it is convenient. The dual set of the Pauli matrices are also introduced: 

(2.17) -3 - - 0  - t+ = r- f -  = r+ T -r3 r - r O .  

They satisfy the relations 

(2.1&) 

(2.186) 
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where p , u  = +,3,-,O. with the help of the E symbol, we can introduce the 
antisymmetric tensors 

sa@ = T,,*,EY@ S,@ = 'RY'07a (2 .19~)  

(2.196) 

The ImaR and tma@ defined above have the same components and so do so@ and 
S a @ :  

They satisfy the orthonormalily relations 

sags*@ = 1 tmaRtne@ = 6", 8,@t,~@ = Im,@Sa@ = 0 .  (2.21) 

As a matter of fact, sag and tmaa are nothing but the C G  coefficients in cou- 
pling two doublets into the singlet and triplet respectively. The projection operators 
corresponding to the singlet and triplet can be easily constructed as 

0 0  o o a @  

Quoy6 = sa@sT6 = ( 2 . a )  

2 0 0 0 a @  

(2.2%) 1 0 1 1 0  
76=5 0 1 1 0  POPT6 = 1, 

( o  0 0 

with the properties 

PZ = P Q Z = Q  P Q = Q P = O  P + Q = E .  

The transformation law for the higher rank tensors is given by 

T+. T- IR '  ... Mt7' M+6',  . .. , - M * ' , , M @ ~ ,  . . . ~ # 6 ~ . . .  '7 76 ... 

(2.23) 

(2.24) 
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3. q-spinors and related topics 

As is shown by Manin [5] ,  the quantum group can be considered as transformations 
acting upon a quantum space, whose coordinates do not " m u t e .  Eiking the simplest 
ZD case, the commutation relation between the two 'coordinates' is given by 

uv  = qvu (3.1) 

with q a complex number. As in the classical case we group U and v into a col- 
umn vector um and call it a q-spinor. The general transformation of a q-spinor is 
represented by a 2 x 2 matrix M as in (2.1): 

um + dm = M * @ ~ @ .  (3.2) 

Introducing the qdeformed Levi-Civita symbol e u a ( q )  and its inverse e"@(q) 

we can write the commutation relation (3.1) as 

c * @ ( q ) U ~ u @  = 0 .  (3.4) 

Requiring that the transformations preserve the commutation relation (3.1), we find 
the entries of M are also non-commutative. This requirement demands that em@ is 
invariant up to a scalar factor, 

Ea@(P)MaurMR@, = ( d e t , M ) e , , p ( q )  (3.5) 

which is nothing but the q-analogue of (2.11). As indicated by Woronowicz [4], the 
twisted mimodularity condition 

detsM = 1 (3.6) 

together with the unitarily conditions (now the following two equations are indepen- 
dent because of the non-commutation among the entries of M )  

(3.7a) 
,I ?L\ 
(J. IUJ 

determine M to be an SU, (2) matrix for q real. 'Ransformations M do not generate 
a usual group but the quantum group SU,(Z). (3.6) and (3.7a) allow us to write M 
as 

- q 1 / 2 c .  

M = (  q-1/2c a a' (3.8) 

with the entries satisfying the relation 

a*a + q-lc*c = I aa' + qcc' = I ac = qca (c*a* = qa'c') (3.9) 
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where Z is the unit of the algebra A generated by a ,  c,  a' and c'. The second 
unitarily condition (3.76) gives 

ac* = qc'a CC' = C.C. (3.10) 

Now the transformations of the spinor U" and its conjugate am can be written 
It has been proved that the algebra A is a Hopf algebra [4]. 

down explicitly as 

U' = a u  - q'lzc*u = - q 1 / 2 u * c  

(3.11) 
u' = q-'/zcu + a*u U'* - - q-'/'u*c* + u*a 

and then (3.6) gives 

U ' d  - qv'u' = uv - quu (3.12) 

and the unitary condition (3 .7~)  implies the invariance of the length 

ti,u" = u*u + u*v = inv .  (3.13) 

But now uan, is not invariant. It can be easily seen from (3.11) and (3.9) that 

q-lu'u" + qu'u" = q-'uu* + quu' = i nv .  (3.14) 

Comparing (3.14) with (3.13) we realize that U" do not commute with at. 
It can be shown further that matrix M satisfies the Yang-Baxter relahon 

R l P l M Z  = MIM2RlZ (3.15) 

where the numerical matrix R 
4 0  

( 0  q-q-' .; :) 
1 0 0  

( R )  = Re",, = 
\ o  0 0 q /  

satisfies the Yang-Baxter equation (in the braid form) 

R12R23R12 = RZ3R12RZ3 

and the characteristic equation 

( R -  q ) 3 ( R +  q-1)  = 0 .  

(3.16) 

(3.17) 

(3.18) 

The eigenvalue equation of R can be written as 

R"@76t,(q)'6 = q t,(q)"@ R"p76s(q)'6 = -q-'s(q),y@. (3.19~) 

Now since R is a q m " m c  matrix, its right-acting eigenvectors (denoted by t"(q),@ 
and s(q),@) have the components identical to thme of its left-acting counterparts 
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The normalized eigenvectors can now be taken as 

t ( + ' ) ( q ) , ,  = 1 

( t (o)(q) lz ,  t(O)(q),,) = (9 '12,  q - ' / 2 ) I 2 ] - ' / 2  

t ( - 1 ) ( q ) 2 2  = 1 

and 

(3.21~) 

( 4 4 ) 1 2 ,  s (q ) , , )  = ( 9 - 1 / 2 , - q ~ / 2 ) [ 2 1 - 1 / z  (3.2lb) 

with all the other components being zero. Here the q-number is defined as 

(3.22) 

such that [O] = 0, [l] = 1, [-n] = -[n], and [2] = Q + q- ' .  It is easy to see that 
tm ( 9 )  and s( q )  satisfy the following orthonormality conditions: 

~ , ( d " ' t " ( q ) , p  = 6; s(q)" 's(q) ,p = 1 (3.234 

t , (q)"'s(q),p = 4n)" ' t " (n ) ,p  = 0 (3.2%) 

and the symmetric relation 

t Y q ) , g  = t m ( q - ' ) @ ,  4d,@ = -4q -1 )@a.  (3.24) 

The projection operators for the triplet and singlet can be defined as 

p"p-,6 = tm(q)"p t" (q )76  Qop76 = s(q)"ps(q)- ,6 (3.25) 

respectively, with the same properties as in the classical case, i.e. 

P2 = P Q Z = &  P Q = & P = O  P + Q = E .  (3.26) 

The R matrix and other relevant matrices can be expressed as the linear combination 
of P and &, e.g. 

h - _.n --1n - 1  .n I n ,I) 1-n n = q r - q  W ( - A ~ I - T  o ~ .  \J.L,, 

Conversely, the projectors can be re-expressed in terms of R: 

R -  XIE 
& =  R - X o E  

X l  - A0 Xo - X l  . P =  (3.28) 

For simplicity we set io(q),p = s(q)op,  put four 1s together, and denote them 

~ p ( n ) a @ t Y ( q ) a p  = 6," (3.29) 

as i" (q) ,p,  fi  = +,3,-,O. The orthonormahty conditions now become 



2936 Xing-Chang Song 

and the completeness conditions can be expressed as 

t,(q)"Bt"(q)7s = = 6"7686. (3.30) 

Corresponding to (2.12), direct calculation shows 

E(q),pM+@7e(q)'6 = M s  o1 (e(q)M+e-'(q) = M t ) .  (3.31) 

This implies that the conjugate spinor 8, transforms equivalent to the basic spinor 
U,, i.e. 

a" = ii,e(q)O" (3.3%) 

"0 = e"e(q),@. (3.326) 

transforms just as U" does. Conversely we have 

Consider WO different q-spinors U" and w@ = (:) transformed by the same ma- 
trix M. Their q-antisymmetric combination is an invariant (singlet) 

s = S(q)"@u"Zu@ = [2]-"yq-'/2uw - q%r) 

t m  = tyq)"@u"w@ (3.34a) 

(3.33) 

and the q-symmetric combination is a triplet 

i.e. 

(3.346) 
. ,  

Under the SU,(2) transformation 

tm - t" = Dm,(q)t" (3.35) 

where D"',(q) = tm(q),pMu7M@stn(q)76 is the j = 1 representationof SU,(2), 
m , n = + , 3 , - :  

(3.36) 

By means of the the completeness relation, the product u"wp can be expressed in 
terms of tm and s: 

u*ws= E Y 6 u  7 w - - (  P+Q)m!6u7ws 

= t ,  op( t~6U7W6)  + s"'(s76U7w6) 

= t , (q)"@P + s ( q ) " @ s .  
... 

(3.37) 
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Making use of the equivalence relation (3.32), we can complete the reduction for 
the product of pair of spinors, n a d  or w"tijp. As in the mud Sup) case, we 
must introduce the quantum Pauli matrices. Things become much more complicated 
because of the nonammutation. Similarly to (2.19) we introduce quantities as 
follows 
r p ( 9 ) " g  = t p ( Q ) " 7 E ( Q ) t p  + ' (Q)"p = d Q ) " ' @ ( 4 ) p 7  (3.3k) 

f p \ v /  In)" .  p = ~ t px.4 /"-'yE(p)7d + p ( q y o  E ( q ) " T p / " - l ) .  \ Y  Ip" (3.3%) 
It can be proved easily that 

T r ( + ' ( d T , ( d )  = +"'dopr,(d8, = 6"" 
Tr(Fp(q)Fv(q) )  = r'(q)"pi,(q)P, = 6 p u  

(3.39a) 

(3.39b) 
from (3.29) and 

r , , ( q ) a o f p ( q ) 7 6  = 6",678 = E"'Y68 
ip (q )"p?(q ) '6  = 6"66'p = E"'6d 

(3.404 
(3.4ab) 

from (330). Here we list the explicit expression of various T matrices for later use: 
0 q - ' / 2  

.t(n)= (. 0 ) T - ( q ) =  (pp,2 :) 
rdn) = (0" -;4) [21-"2 TO(4) = ( 1) [21-'/2 

(3.41a) 
1 0  

+(4) = r-(q) ?-(d = .+(n) 
(3.41b) 

(3.41~) 

(3.4ld) 

The commutation relations among r's  can be obtained directly by these expressions, 
i.e. 

[73(4),r*(Q)] = *[2I1/'T*(4) 

V + ( q ) T - ( d  - Q-lT-(q)T++(Q) = [211/2T~(4) 
(3.42) 

which can be regarded as the q-deformation version of the classical SU(2) algebra 
(2.16). In comparison with the "mutat ion relation of the generators obtained by 
Woronowia [4] from a consistent differential calculus on the non-"mutative space 
of the quantum group, 

4 2V 1 0  v - q-2vov, = (1 + q2)Vo 

92v2v! - Q-2v'v2 = (1 + q 2 P 2  
qv,v, - q-'v,v, = v, 

(3.43? 

VI = q[2 ] ' / 2 r3 (q )  v, = -q'&+(q) v, = q ' /%-(q) .  (3.44) 
we have to make the following identification: 
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4. Application 

In this section, with the help of the tools developed in the last section, we will 
illustrate how to reduce the high-rank 'tensors' into irreducible pieces. First consider 
the product of a pair of conjugate spinors nBu". From (3.406) we have 

sPuo = (6°667P)a7ub = ?,,(q)OLBA' 

with 
p - -  =s A - U v T  (q ) '6?bb.  

Under the action of SU,(2), we see 

(4.2) 

A' = ~ p ~ o ( ~ ) P o u o  = [2]-'/'a,u" + A'. (4.3) 

As has been mentioned in the last section, the contraction of apuo is an invariant, 
and 

A"' = tiPSm(q)Pouo - %ip,MtPtP+'"(q)P, M",,u"' = Dmn(q)A" 

M+P'P S"( q)@ Mu o, = Dm ,,(q)?-" (q )@ 

(4.4) 

since 

(4.5) 

as can be seen from the appendix. 
Similarly from (3.40~1) we see 

uoiiP = ( 6 ° 6 6 7 8 ) u b ~ v  = r,,(q)"Pt"(q)'au6a, = rp(q)oPB". 

uefiP - M " , , U " ' ~ ~ , M ~ ~ ' ~  = MU, , r , (q )" 'p ,M+p'pBY.  

M",,ro(q)"'B'M+P' p - - . r o ( d " p  

M",r7n(q)"'P#M+~'P = r"'(q)*BDmn(q). (4.W 

(4.6) 

Under the SU,(2) transformation 

(4.7) 

We will see in the appendix that 

( 4 3 4  

Then (4.7) gives 

~,,,(q)"@" + ro(q)"gBo - T,(Q)"QD"',,(Q)B" + rdq)"'gB'. (4.9) 

This implies that 

Bo = +o(q)p,uotiP = [2]-1'a(q-1uu* + qvv.)  

is an invariant (which coincides with the result in (3.14)), while 

(4.10) 

Bm = tm(q)Pouolg (4.11) 
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transform as the j = 1 representation of SU,(2), i.e. 

B"' -.-+ D m n ( q ) B " .  (4.12) 

From the decomposition in (3.34), (3.37), (4.1) and (4.6), we conclude that Spinors 
transformed by the same matrix M (e.g. u and w in (3.37)) or by the relevant matrices 
(e.g. U and a in (4.1)) cannot be commuted. The commutation relation between two 
different spinors must preserve the singlet-triplet structure. So if 

u * d  = KQ.876w7u6 (4.13) 

we must have the form 

I< = k,P + k o Q .  (4.14) 

The consistency of triple products such as uww or uuw constrains I< to be K a 
for k,/ki = X,/X, = -q-2 or I< a R-' for k,/k, = X,/Xi = -q 2 . 

'Ib illustrate the reduction method for the higher-rank 'tensor', we consider a 
third-rank 'tensor' with mixed indices, Tnp7. Care must be taken in dealing with 
these indices. Their position and order are both important. When one wants to 
change the order, one must introduce some IC matrix as in (4.13). When one wants 
to raise or lower the index, one uses c ( q )  or c ( q j Q S ,  e.g. Tnp7t (q)@ = Y O 7 .  

Pairs of upper and lower indices in the neighbourhood can be contracted. ( p , ~ )  
indices can be contracted directly (called A-type contraction) to obtain a 'tensor' two 
ranks lower, ie. R" = TQp7(?")pY. (a,@) can also be contracted by taking the 
trace with the matrix tu( q )  (called B-type contraction) also obtaining a 'tensor' two 
ranks lower, i.e. S7 = t"(q)@,TQp7.  The irreducible 'tensors', which are both A- 
type traceless in ( @ , 7 )  and B-type traceless in (a,@), can be obtained by a tedious 
calculation 

~~ <~ 

Qa 

Tup7 = Tap7 - - { ( [2 ]Ra  PI - S Q ) i o ( q ) ' p  + ~ ~ ( q ) ~ ~ ( [ 2 ] S ~  - R 7 ) }  (4.15) 
[31 

comparable with the classical result 

p p y  = T Q ~ Y  - Z 3(TQo"- $T',a)6p7 - $6*.8(T",7 - $ F q 6 ) .  (4.16) 

Then by raising the index @, Tap7 are q-symmetric with respect to the transposition 
of ( a , p )  and symmetric with respect to ( p , ~ ) ,  and so it is totally q-symmetric to all 
three indices: 

j l a r . 8 ~  = q(B-o)fv707 = q ( 7 - P ) p w P  = 4 ~ ( - I - o ) ~ T R Q ,  (4.17) 

In a similar way any high-rank 'tensor' can be reduced by applying the t symbol 
and quantum Pauli matrices step by step. The irreducible 'tensors' can always be 
represented by the ones with only q-symmetric upper indices, very similarly to the 
classical SU(2) case. 

Quantum Wuii matrices can aiso be used in B coupiiny theory wiiicii is invariant 
under the action of quantum group. For example, when .I = $" is the basic spinor, 
the expression 

@ * T V  (4.18) 
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is an SU,(2)-invariant coupling, provided am is transformed according to the j = 1 
representation 

@"' - D",(q)@" (4.19) 

where a,,, = g,,,,@", with gmn the metric in the three-dimensional space, as defined 
in the Appendix. The same method can be applied to the quantum SL9(2, C), i.e. 
&.e q~anhjm Larenh group. '!le resu!! win be @en In a s e p g ~ t e  paper. 
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A ...."...I:" rryyruuu 

In this appendix we give some useful properties of the projection operators and of 
the SOq2(3) transformation matrix D(M)"',. 

According to [3], the operator-valued matrix M = (Mm'P)o,'P=,,2 acting on a 
linear space V satisfies the Y-B relation in its original form 

R12MIM2 = M2MIR12 (4 
where R = RepT6 is a numerical matrix associated with V @ V. Then the compati- 
bility condition for this Y-B relation can be written (sufficiently) as the Y-B equation 
in its original form 

'C12'L13'*23 D D D - D D D  - '*>3'*13'*12. (A2) 

By introducing the braid-like matrix R = P R  with P the permutation matrix 

P = PapT6 = EmP67 = 6-6607 

one can recast the Y-B relation (Al) into its braid form as in (3.15) 

R12MLM2 = M,M2R,2 ('44) 

R12R13R23 = R13R23R12 (AS) 

and (A2) into 

simply by multipiying the permutation matrbr P12 from the kit to (xi) and (mi. 
Further multiplying PZ3Pl3 on (AS) from the left, one finds the braid form of the 
Y-B equation 

R 1 2 R 2 3 R 1 2  = R23R12R23 ('46) 
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as is given in (3.17). The formal similarity between (Al) and (A2) and between (A4) 
and (As) indicates that R can be considered as a simplest representation of M, i.e. 

(Ma8)-16  = kRa7 86 (An 

where k must take to be q-'/' to ensure det, M = 1. 
Now the matrix R has two different eigenvalues namely, A, = q (triple) and A,, = 

-9-l (single), with t,(q)@ and s(q )"P  as its corresponding left-action eigenvectors 
and t"(q),@ and s(q) ,@ as its right-action eigenvectors. The projection operators 
for the triplet and singlet can be respectively defined as (Q") = 'P, Q(') = Q in the 

Q(l) "'76 = tm(q)0Btm(q)+,6 Q(') pB+,6 = s(q)"'s(q),a (AS) 

text) 

with the properties 

Q(l) " 8  t ( q ) Y 6  =t,(q)"P Q(')"@ t (q)-16 = O  

Q(') " @ 7 6 s ( q ) 7 6  = s(q )"@ 
(-49) 

-16 m -16 m 

Q(') p 8 7 6 ~ ( q ) Y 6  = 0 .  

And similarly for the right-action vectors tm(q) ,p  and s(q) ,p .  Alternatively the 
projection operators can be re-expressed by l? itself as in (3.38) 

with E the unit matrix in V @ V. Then from (A4), (A5) and (A10) one can easily 
obtain 

Q ' , ~ M , M ,  = M , M , Q ~ ~  i = o , i  (Alla) 

Q ~ ~ R , , R , ,  = R , , R , , Q ~ ~  i = o , i  . (Allb) 

Multiplying sI2 (= s ( q ) , @ )  from the left or sl' (= s ( q ) " @ )  from the righf one 
gets 

Equation ( A l k )  shows that s , ,M,M, and M1Mzs1* are the eigenvectors of QI:) 
acting from r i g t  and left respectively. So they must be proportional to s12 and 
SI', i.e. 

(A13a) 
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where X and p are the proportional coefficients, may depend on the entries of M .  
But since M under consideration is a unimodular matrix, according to (3.9, one has 
X ( M )  = p ( M )  = 1. Similarly from (A12b) one sees 

(A13b) 

and X'(M) = $ ( M )  = q from the consideration that R is a representation of M 
as in (An. This gives 

or explicitly 

or equivalently 

Similar relations 

(A15a) 

can be obtained from the consideration that R-' is another representation of M ,  i.e. 

In a similar way, by multiplying 1: (= t , (q )e@)  from the right or t;1 (= 
(M08)T6  = q'lZR-1 7 e b p .  

Im(q)08) from the left to (All) one obtains 

Now (AlQ) shows that MI M 2 t z  is an eigenvector of Q$, so it must be a linear 
combination of t!,2, i.e. 



+O 

t- 
O t  

R =  00 
0- 

-+ 
-0 

A 1 
(1 - q-,)A -9-'A c2 

1 0 
-q-'A 1 ('426) 

A 1 
r2 0 

1 0 



2944 Xing-Chang Song 

where A = q2 - q-' and the blank spaces mean that the corresponding entries are 
zero. Similarly to the two-dimensional case (3.19). there exists a tensor g,, which is 
the right eigenvector of 7?"',,,,,,,, 

g m n U m n m l n l  = q-4gmjn,  

and satisfies the relation 

g , n D ( M ) m m e D ( M ) n n ~  = gmsn* (A28) 

gmn and its inverse gmn,  playing the role of metric and its inverse, have the same 
components, i.e. 

(A291 
1 

gmn = ( 9 + - , 9 o o > g - + )  = ( q -  q)  

and other components are zero. Comparing to the definition in [3], one sees that 
D ( M )  is the operator-valued SOq2(3) matrix, and 72 is the corresponding R matrix. 

Then it can be shown directly from the definition (3.38) that 
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